文章编号: 0258-7025(2008)06-0884-05

激光脉冲制作的长周期光纤光栅/法布里-珀罗 高温-应变组合传感器

廖 弦¹ 饶云江^{1,2} 冉曾令¹ 邓洪有¹

(¹电子科技大学宽带光纤传输与通信网技术教育部重点实验室,四川 成都 610054 ² 重庆大学光电技术与系统教育部重点实验室,重庆 400044

摘要 在很多高温环境应用中,诸如发动机、飞机和宇航器、复合材料的健康监测,需要精确测量应变。针对这种 场合提出了一种基于激光脉冲制作的长周期光纤光栅/法布里-珀罗(LPFG/F-P)温度-应变组合光纤传感器。该传 感器由长周期光纤光栅与光纤法布里-珀罗干涉传感器级联构成,其中长周期光纤光栅由高频 CO₂ 激光脉冲制作, 用于监测温度;光纤法布里-珀罗干涉传感器由157 nm准分子激光脉冲制作,用于监测应变。这种新型组合光纤传 感器最大的特点是能承受500 ℃的高温并能在高温环境下实现应变的精确测量,可望在高温恶劣环境条件下的结 构(如飞机发动机)健康监测、复合材料生产过程监测等应用中发挥重要作用。

关键词 光纤光学;光纤传感器;长周期光纤光栅;法布里-珀罗光纤传感器;激光微加工;高温;应变 中图分类号 TP 212.14 **文献标识码** A

Simultaneous Measurement of High-Temperature and Strain Using a Combined Long-Period Fiber Grating/Fabry-Perot Sensor Fabricated by Laser Pulses

Liao Xian¹ Rao Yunjiang^{1,2} Ran Zengling¹ Deng Hongyou¹

¹Key Laboratory of Broadband Optical Fiber Transmission & Communication Networks Technology, Ministry of Education, University of Electronic Science & Technology of China, Chengdu, Sichuan 610054, China ²Key Laboratory of Optoelectronic Technology and Systems,

Ministry of Education, Chongqing University, Chongqing 400044, China

Abstract A novel fiber-optic sensor consisting of a long-period fiber grating (LPFG) and a Fabry-Perot (F-P) interferometric sensor is proposed and demonstrated for simultaneous measurement of high-temperature and strain. The LPFG and fiber F-P sensor form the sensor in cascade. The LPFG written by high frequency CO_2 laser pulses is used for high temperature measurement while the F-P sensor fabricated by 157 nm excimer laser pulses is used for strain measurement. Such combined fiber-optic sensor can stand for high temperature of 500 °C and achieve precise measurement of strain under high temperature environments simultaneously.

Key words fiber optics; optical fiber sensor; long period fiber grating; fiber-optic Fabry-Perot sensor; laser micromachining; high temperature; strain gauge

1 引 言

近年来,基于光纤光栅传感器和光纤干涉传感器的温度及应变多参数同时测量是个非常活跃的研究领域^[1~3],这类传感器被广泛应用于复合材料、大

型建筑结构(如桥梁等)、宇航飞行器、飞机等的结构 健康监测,以实现所谓的智能结构^[4,5]。其中比较 有代表性的方法是用光纤光栅和非本征型光纤法布 里-珀罗(F-P)干涉腔构成组合传感器^[6~9]。本文提 出了一种新型的组合光纤传感器,由长周期光纤光

收稿日期:2007-07-17; 收到修改稿日期:2007-11-20

基金项目:国家自然科学基金重点项目(60537040)资助课题。

作者简介:廖 弦(1982—),女,四川人,硕士研究生,主要从事光纤传感技术方面的研究。E-mail:liaoxian_vip@163.com **导师简介**:饶云江(1962—),男,云南人,电子科技大学长江学者特聘教授,博士生导师,主要从事光纤传感技术与光纤通 信器件方面的研究。E-mail:yjrao@uestc.edu.cn(通信作者)

栅(LPFG)和光纤法布里-珀罗干涉腔级联而成。长 周期光纤光栅用于监测高温变化,用高频 CO2 激光 脉冲写入^[10],该方法能高效率、高质量地制作长周 期光纤光栅,其成本远低于紫外光写入的光纤布拉 格光栅(FBG),而温度敏感性却高于光纤布拉格光 栅,并能承受比光纤布拉格光栅高得多的温度。光 纤法布里-珀罗干涉腔用于监测应变,由157 nm准分 子激光器制作。近年来,准分子激光器以其微米级 的加工精度和高加工质量在超细微加工等领域显示 出不可比拟的优势[11~14],广泛应用于各个领域。将 其引入到光纤传感器件加工中,在光纤端面上制作 出微结构的法布里-珀罗干涉腔。和传统的非本征 型法布里-珀罗干涉腔的制作方法相比,该方法无需 人工手动操作,无需封装,具备可重复性和批量生产 能力,克服了光纤端面在装配过程中容易损伤和密 封胶粘剂在高温下容易老化从而导致传感器性能下 降甚至失效的问题,能工作在恶劣的高温环境。加 工的传感器尺寸在微米量级,实现了真正意义上的 微结构。虽然 Machavaram 等^[13]也曾在光纤上实 现法布里-珀罗腔,利用准分子激光器从侧面将光纤 击穿,但这种开放的光纤法布里-珀罗干涉腔相比于 本文提出的密封法布里-珀罗腔容易受外界环境的 污染。

2 传感器结构

长周期光纤光栅用高频 CO₂ 脉冲激光器在标 准通信单模光纤中写入,插入长60 mm,内外直径分 别为128/300 μm的石英管中,并在石英管两端用激 光点焊技术封装,使长周期光纤光栅在石英管中处 于自由状态。法布里-珀罗干涉腔用准分子激光微

图 1 准分子激光微加工系统框图 Fig. 1 Schematic illustration of 157 nm micromachining system

加工系统直接制作而成,如图1所示。

事先在掩模上开一个矩形孔,该孔限制了光束 的形状并减小光束的物理尺寸以作进一步聚焦。将 掩模置于输出激光光束前,掩模与光纤之间放置一 个透镜,透镜将通过掩模的矩形光束聚集于光纤端 面从而实现矩形微槽的直接加工。微加工系统中的 其他器件——衰减器和光束匀化器起着调节激光光 束能量和使光束光强分布均匀的作用。聚焦在光纤 端面的光束能量密度高达12 J/cm², 重复频率为 20 Hz。光纤吸收大能量、高功率的157 nm紫外光, 表面迅速气化引起材料的消融,160个脉冲作用后 在光纤端面形成了深度约为40 µm的矩形微槽。将 加工好的光纤与另一根端面平整的单模光纤通过熔 接机对接起来,矩形微槽自然就被密封在光纤内部, 法布里-珀罗干涉腔加工完成。图 2,图 3 分别为光 学显微镜(OLYMPUS DP70 U-TV 0.5 XC-2, 4H01747, Japan) 拍摄的光纤端面照片和熔接机 (S182A, Fitel, Japan)呈现的光纤透射图。从图上 能清晰地看到激光脉冲制作的矩形槽和槽被密封在 光纤内部的情况。改变掩模图形,能加工出不同形 状的微槽;控制激光脉冲能量密度和个数,能加工出 不同深度的微槽。

图 2 加工的法布里-珀罗干涉腔的结构图 Fig. 2 Micrograph of a fabricated F-P cavity

图 3 熔接机呈现的光纤内部法布里-珀罗腔透射图 Fig. 3 Transmitted micrograph of a F-P cavity inside a fiber from the fusion splicer

3 测量原理

由长周期光纤光栅的相位匹配条件和模式耦合 理论可推导出耦合中心波长λ随温度T变化的表达 式

$$\frac{\mathrm{d}\lambda}{\mathrm{d}T} = \Lambda \left[\frac{\partial (n_{\rm co} - n_{\rm cl}^{\rm m})}{\partial n_{\rm co}} \frac{\partial n_{\rm co}}{\partial T} + \frac{\partial (n_{\rm co} - n_{\rm cl}^{\rm m})}{\partial n_{\rm cl}} \frac{\partial n_{\rm cl}}{\partial T} + \frac{\partial (n_{\rm co} - n_{\rm cl}^{\rm m})}{\partial r_{\rm 1}} \frac{\partial r_{\rm 1}}{\partial T} + \frac{\partial (n_{\rm co} - n_{\rm cl}^{\rm m})}{\partial r_{\rm 2}} \frac{\partial r_{\rm 2}}{\partial T} \right] + \lambda \alpha ,$$

$$(1)$$

式中 Λ 为光栅周期, n_{co} 和 n^m_d 分别为导模和 m 阶包 层模的有效折射率, r₁ 和 r₂ 分别为纤芯和包层的半 径。纤芯和包层的热光系数 dn_{co}/dT 和 dn_d/dT 远大 于光纤材料的线性热膨胀系数 α, 因此, 耦合波长的 漂移主要是由温度变化引起光纤折射率变化而形成 的, 而与热膨胀引起的纤芯、包层半径和光栅周期的 变化关系不大。当长周期光纤光栅纤芯和包层的热 光系数确定后, dλ/dT 近似为一常量, 即耦合中心波 长的漂移与温度变化成线性关系。

对法布里-珀罗干涉腔,由多光束干涉理论,当 相邻两反射光束的相位差满足下列关系时产生条纹

$$\phi = \frac{4\pi}{\lambda} n l \cos \theta = k \frac{l}{\lambda} = 2m\pi,$$

$$m = 0, \pm 1, \pm 2, \cdots$$
(2)

式中 *l* 为法布里-珀罗腔的初始腔长。当应变施加 于光纤时,会引起法布里-珀罗腔腔长的变化,在光 谱上表现为干涉条纹的移动。本实验中,由于干涉 条纹的移动非常小,相位变化远小于 2π,故可以某 一波峰为基准点,认为移动后的波峰与初始波峰是 同一级条纹,于是新的相位差和条纹条件为

 $\phi' = k \frac{l'}{\lambda'} = 2m\pi, \quad m = 0, \pm 1, \pm 2, \cdots$ (3)

联合(2),(3)两式,可推导出应变与波峰波长变化成线性关系

$$\varepsilon = \frac{\Delta l}{L} = \frac{l'-l}{L} = \frac{l(\lambda'-\lambda)}{\lambda L} = k\Delta\lambda, \quad (4)$$

由理论分析表明,温度与长周期光纤光栅中心波长 变化量 Δλ 的关系为

$$T = K_{(\text{LPFG})T} \Delta \lambda, \qquad (5)$$

K_{(LPFG)T} 为长周期光纤光栅的波长 - 温度灵敏度。应 变与法布里 - 珀罗干涉条纹极小值 Δλ 的关系为

$$\boldsymbol{\varepsilon} = K_{(\mathrm{F-P})_{\varepsilon}} \Delta \boldsymbol{\lambda}, \qquad (6)$$

K_(F-P)。为法布里 - 珀罗干涉腔的波长 - 应变灵敏度。 在实际高温和高精度测量应用中,还要考虑应变对 长周期光纤光栅以及温度对法布里 - 珀罗干涉腔的 影响。由于长周期光纤光栅被封装在石英管中,不受 应变影响,因此,只需要对(6)式进行修正。由(5)式 测出温度后,再根据下式进行修正

$$\boldsymbol{\varepsilon} = K_{(\mathrm{F-P})\varepsilon} \Delta \boldsymbol{\lambda} + K_{(\mathrm{F-P})T} \Delta T, \qquad (7)$$

 $K_{(F-P)T}$ 为法布里-珀罗干涉腔的波长-温度系数。 $K_{(LPFG)T}, K_{(F-P)T}, K_{(F-P)\varepsilon}$ 可通过实验标定得到。

4 实验结果

光

长周期光纤光栅/法布里-珀罗组合光纤传感器 实现温度和应变同时测量的实验系统如图 4 所示。 光源和接收设备为高精度光谱分析仪(MOI Si720, USA),其测量范围为 1510~1590 nm,波长精度为 2.5 pm。Si720 中的激光扫描光源发出的光通过单 模光纤进入长周期光纤光栅/法布里-珀罗组合光纤 传感器,经过法布里-珀罗干涉腔时产生干涉,反射 光经环形器进入 Si720。法布里-珀罗干涉腔的反射 谱如图 5 所示,条纹为规则的正弦曲线。透射光通 过长周期光纤光栅时发生模式耦合,Si720 接收的 光谱为法布里-珀罗干涉腔和长周期光纤光栅的混 合光谱,如图 6 所示。

图 4 温度和应变同时测量的传感系统 Fig. 4 Sensing system for measurement of high temperature and strain response simultaneously

图 5 法布里-珀罗干涉腔的反射光谱

Fig. 5 Reflection spectrum of F-P interference cavity

实验过程中,法布里-珀罗干涉腔和长周期光纤 光栅置于高温炉内(Lenton,UK),并在高温炉两端 架设高精度微动台(Newport 561D)对长周期光纤 光栅/法布里-珀罗组合光纤传感器施加应变。高温 炉的温度分辨率为1℃,从100℃开始加温,温度间 隔为50℃,一直加热到650℃。待高温炉温度稳定

在某个温度后,旋转微动台螺杆在传感器两端施加 应变,从0开始,25μm间隔记录一次数据,一直加 到500μm,12个温度点一共取得12组应变数据。 Si720实时地监测反射光谱中法布里-珀罗干涉条纹 的第一个极小值点波长随应力的变化情况和透射光 谱长周期光纤光栅的耦合中心波长随温度的变化情况。

长周期光纤光栅在自由状态下的高温特性如图 7 所示。可以看出,在高温环境下,长周期光纤光栅 的中心波长随温度变化的曲线呈线性,其线性拟合 度达到0.9971,和理论分析相符,且波长-温度灵敏 度为0.1142 nm/℃,对温度非常敏感,能很好地实

现温度测量。法布里-珀罗干涉腔在自由状态下的 高温特性和在500 ℃下的应变特性如图 8,图 9 所 示。500 ℃时,法布里-珀罗干涉腔的波长-温度灵敏 度和波长-应变灵敏度分别为0.0009 nm/℃和 0.0052 nm/με,代入(7)式可得法布里-珀罗干涉腔 的 $\epsilon = 0.0052\Delta + 0.0009 \times 500$ 。

图 9 法布里-珀罗干涉腔在500 ℃的应变特性 Fig. 9 Strain response of F-P interference cavity at 500 ℃

经过多次重复实验,发现长周期光纤光栅/法布 里-珀罗温度传感特性和应变传感特性基本不变,具 有很好的稳定性。

5 结 论

用 157 nm 准分子激光器和光纤熔接技术制作 出一种新型密封的法布里-珀罗干涉腔,并和高频 CO₂ 激光脉冲制作的长周期光纤光栅构成组合光 纤传感器。充分利用了长周期光纤光栅对温度敏感 而应变不敏感以及法布里-珀罗干涉腔对应变敏感 而温度不敏感的互补特性,实现了温度和应变的同 时测量,并为实验所证实。

参考文献

- Rao Yunjiang. In-fibre Bragg grating sensors [J]. Mears. Sci. Technol., 1997, 8(2):355~375
- 2 Dong Yuming, Zhang Xuping, Lu Yuangang *et al.*. Cross sensitivity of Brillouin scattering distributed fiber sensor [J]. *Acta Optica Sinica*, 2007, **27**(2):197~201 董玉明,张旭苹,路元刚 等. 布里湖散射光纤传感器的交叉敏 感问题[J]. 光学学报, 2007, **27**(2):197~201
- 3 Wang Jiuling, Rao Yunjiang, Zhu Tao. High-temperature and strain characteristics of long period grating with asymmetric refractive index profile in the cross section of fiber [J]. Chinese J. Lasers, 2007, 34(3):389~392

王久玲,饶云江,朱 涛. 截面折变非对称型长周期光栅高温应 变特性[J]. 中国激光, 2007, **34**(3):389~392

4 Yu Xiujuan, Yu Youlong, Zhang Min *et al.*. Applications of fiber Bragg grating sensor for aerospace composite and structures health monitoring [J]. *Laser Journal*, 2006, 27(1): 1~3

于秀娟,余有龙,张 敏等.光纤光栅传感器在航空航天复合材料/结构健康监测中的应用[J].激光杂志,2006,**27**(1):1~

Rao Yunjiang, Zhou Changxue, Ran Zengling et al.. SFDM/ 5 WDM for large number of fiber-optic F-P sensors based on chirped fiber Bragg grating [J]. Chinese J. Lasers, 2006, 33 $(5):631 \sim 635$

饶云江,周昌学,冉曾令 等. 啁啾光纤光栅法布里-珀罗传感器 波分频分复用[J]. 中国激光, 2006, 33(2):631~635

Rao Yunjiang, Zeng Xiangkai, Zhu Yong et al.. EFPI/FBG strain-temperature sensor and application [J]. Acta Optica Sinica, 2002, 22(1):85~88 饶云江,曾祥楷,朱 永等. 非本征型法布里-珀罗干涉仪光纤

布拉格光栅应变温度传感器及其应用[J]. 光学学报, 2002, 22 (1):85~88

- Rao Yunjiang, Zeng Xiangkai, Zhu Yong et al.. Temperature 7 strain discrimination sensor using a WDM chirped in-fiber Bragg grating and an extrinsic Fabry-Perot [J]. Chinese Physics Letter, 2001, 18(5):643~645
- Jiang Jian, Rao Yunjiang, Niu Yongchang et al.. Simultaneous measurement of temperature and strain using an integrated LPFG/EFPI fiber-optic sensor [J]. Acta Photonica Sinica, 2003, 32(9):1063~1066

江 建,饶云江,牛永昌等.应用 LPFG/EFPI 集成式光纤传感 器实现温度及应变的同时测量[J]. 光子学报, 2003, 32(9): $1063 \sim 1066$

- 9 Rao Yunjiang. Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors [J]. Opt. Fiber Technol., 2006, 12(3):227~237
- 10 Rao Yunjiang, Wang Yiping, Ran Zengling et al.. Novel fibreoptic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses [J]. J. Lightwave Technol., 2003, 21(5):1320~1327
- 11 Lee Yungchun, Shi Hoa Kuo. Miniature conical transducer realized by excimer laser micro-machining technique [J]. Sensors and Actuators A, 2001, 93:57~62
- 12 K. Zimmer, R. Bohme. Precise etching of fused silica for micro-optical applications [J]. Applied Surface Science, 2005, **243**(1-4):415~420
- V. R. Machavaram, C. J. Tuck, M. C. Teagle et al., Laser 13 micromachined and acid-etched Fabry-Perot cavities in silica fibres [C]. SPIE, 2005, 6038;60380D-1~60380D-12
- 14 Chen Tao, Yao Living, Qi Heng et al., Some key problems in PMMA based PCR microfluidic biochip by excimer laser micromachining [J]. Chinese J. Lasers, 2007, 34(Suppl.):146 $\sim \! 150$

陈 涛,姚李英,祁 恒等. PMMA 基 PCR 生物芯片及其准分 子激光制备技术的几个关键问题[J]. 中国激光, 2007, 34(增 刊):46~150